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ABSTRACT

The input impedance of an antenna is highly dependent on

the frequency range in which it operates. For an electrically

small antenna to operate in a broad frequency range, the

antenna must be properly matched. This thesis presents the

design of a matching network for a 1-meter monopole antenna,

operating over 30-90 MHz using the real frequency method

(RFM). It outlines the mathematical steps needed to determine

the equalizer function, which ultimately leads to the circuit

design. The goal of the RFM, given the real frequency data,

is to optimize the Transducer Power Gain (TPG), and minimize

the reflection coefficient or power lost due to the impedance

mismatch. A complete design including network realization is

given. However, no experimental results are presented.
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I. INTRODUCTION

One of the important factors in antenna performance is the

input impedance. The antenna impedance consists of both real

(resistance) and imaginary (reactance) parts. The reactive

component is generally unwanted because it gives rise to

stored energy in the near field of the antenna [Ref. 8].

The input impedance is primarily determined by the

geometry and electrical size of the antenna, and it can be

significantly different from the impedance of the generator.

To optimize the power transfer from the generator to the

antenna, it is necessary to insert an impedance transformer

between the two. Ideally, the transformer (or matching

network) should be designed to eliminate the reactive

component of the antenna impedance, and at the same time

provide an input resistance equal to that of the generator.

This is relatively easy to accomplish at a single frequency,

but becomes more difficult as the operating frequency of the

antenna increases.

Until the development of the real frequency method (RFM),

a broadband matching network had been designed by an analytic

method or by an iterative trial and error procedure. An

analytic method requires complex and rigorous mathematics even

for a simple network. However, RFM, developed by Carlin in

1977, made designing a matching network simpler, more direct
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and less complex. It does not assume an equalizer topology,

nor does it require an analytic description of the load (input

impedance of the antenna in our case) as long as it can be

obtained by some means [Ref. 1]. It is a numerical method

that only requires the real frequency data of the load for the

frequency band of interest [Ref. 1].

Although several approaches have been published for

broadband impedance matching, none has been tailored specially

for broadband monopole antennas. However, in his recent work,

Rao [Ref. 10] has built and tested a matching network for a

loaded monopole antenna at HF using the resistivity profile

developed by Wu and King [Ref. 11]. Unfortunately, that

antenna is 35 feet long and is not an acceptable candidate for

manpack or vehicular mount. Therefore a 1-meter monopole

antenna was chosen. Like a dipole, this antenna is narrow

band and it is "electrically small" in the very high frequency

(VHF) band. However, it can be made broadband by resistive

loading and properly designing a matching network.

This thesis describes the mathematical basis of RFM and

uses this approach to design a matching network for a 1-meter

monopole antenna operating over 30-90 MHz.

2



11. MATHEMATICAL BAS IS FOR RFM

In this chapter, the basic concept of RFM is described and

the steps for implementing the RFM are outlined.

A. CONCEPT OF RPM

The best way to describe the concept of a matching network

or equalizer circuit is through the simple description of a

lossless two port network (Figure 1). In a two port network,

we are interested in relating current and voltage at one port

to current and voltage at the second port. This gives us a

transfer function that characterizes the relationship between

the two ports.

one of the design requirements of broadband matching is to

maximize power transfer between a power generator and the load

over a given frequency range. To this end we consider the

transducer power gain (TPG) as defined by Carlin [Ref. 1]

TPG =T(w) =Power DelZivered to Load 1 - 1Power Available from the Generator

where p is the complex reflection coefficient,

ZG7+ZL

between the equalizer and the load.

3



Ro0

matching
V network load

Z q Z L

Figure 1 Simple Two-port Network

It can be seen from the previous equation that a perfectly

matched network will have a gain of one. However, this is an

unrealistic design that is not achievable in practice. Our

goal is to design a network which minimizes p and maximizes

the power delivered to the load.

For a given load impedance, looking at the Thevenin

equivalent circuit from the loaded port (Ref. 1] allows us to

find an equalizer impedance, Zq (w) . Expressing the TPG in

terms of load impedance and equalizer impedance,

T(w)= (1)(WR (0

where

RL(W) = load resistance
R' (w) = equalizer resistance
Z' {w) = load impedance
Zq(w) ý equalizer impedance.

4



B. MATHEMATICAL DEVELOPMENT

The fundamental approach of RFM is its use of real

frequency data to determine an equalizer function. In

general, the impedance of the network can be complex:

Z1(w)=R4(4)) + JXq,(w), where Rq(w) is the real part and Xq(w) is

the imaginary part. We will use Rq(G)) to find Zq((). The

key, of course, is finding the real part. In a step-by-step

procedure, the next two sections are devoted to finding the

real part (resistance) of the complex impedance function, and

the following section derives the equalizer impedance. One

thing to note is that the poles of the equalizer impedance

must be in the negative half (left) of the complex frequency

plane.

1. Linear Combination Approximation

It is desired to design a broadband equalizer in the

frequency range Gk < < 4. The given frequency range is

first partitioned into smaller bands, and the resistance .s

assumed to behave linearly within each sub-band. Several out-

of-band break points are added from zero frequency to the

lower frequency k, and one frequency break point, 4, is added

beyond 4. The choice of q depends on the roll-off desired.

The first step in solving for an equalizer impedance

is to obtain a linear approximation of the resistance, Rq(W).

The values of Rq(w) are dependent on the excursive

resistances, rK, or the unknowns. The excursive resistances

are the ramp values between each of the break points,

5



0 < < . . .< (, for a given frequency range [Ref. 7].

The number of unknowns are determined by the break points.

For example, if there are n break points, there are n-i

unknowns. The relationship between R (w) and r is [Ref. i)

N

Rq (W) =ro+ ak(w )r (2)

where

(•) ~ (A k • _

dk ((a) -O- We -W (3)
Wk-(k-1

0,

and r =DC resistance.

The equalizer resistance, R.(w), is made zero for w

4 [Ref. 1]. From equations (2) and (3), this means that

n

10 (4)

If the DC resistance value r is available, the number of

unknowns is no longer n-i but n-2, and we have

n-1

= - (ro + 1 k). (5)

We have only considered the real frequency data thus

far. However, an equalizer impedance funlction has both even

(real) and odd (imaginary) parts. Since the resistance is

assumed to be piecewise linear in frequency, the reactance

will be defined in the same manner [Ref. 11. As in the case

6



of the resistance, the reactance is expressed in terms of the

excursive resistances

Nxq (W) bk (w) rk ( 6)

where the coefficients b are obtained from [Ref. 3]

bk(W) ( - -1 ) f I -+ Idy. (7)

They can be written in a closed form [Ref. 4] as

bk()= 1 w,[ [(x+l)log(x+l)+(x-1)logi(x-1)I-2log(x)I

where
x.

Xk

With the real and imaginary parts defined, an IMSL

optimization routine ZXSSQ can be employed to find the

excursive resistances required to produce a given TPG. The

error function to minimize is IT-T(w)I, where T is the

assumed power gain, which can be increased until the

resistance values just begin to become negative.

2. Rational Approximation

The second step is to obtain a rational function which

closely approximates the piecewise linear curve specified by

the resistive excursions [Ref. 2]. This is done so that a

circuit realization of the equalizer impedance can be

determined using the Gewertz method which requires a ratio of

7



polynomials. For convenience, we assume that the DC

resistance, r,, is zero in the subsequent development.

Previously we have stated that Rq(W) must be non-

negative for an infinite frequency range [Ref. 11. This

places a constraint on an optimization routine, and

constrained optimization is difficult to handle. This is

because most optimization routines are written for

unconstrained conditions [Ref. 5].

Direct use of the unconstrained optimization will lead

to positive and negative values of resistances which are

unacceptable. To get around this, the numerator and

denominator polynomials in the rational function approximation

•(c) =(AO + A 1 CO *''' + A.(O') = A((&)
(1 + BS'1 

2 +... + ") E(W 2)

are expressed in terms of a second polynomial of the form,

P,(CO) = 1 + xI• + . . . + xn'. The denominator polynomial,

for example, can be written as

B((a')21P2(w) + P2(-w•)] (9)
2"

Noting that Rq(O)=O and using only one term in the numerator

polynomial, the rational resistive function can now be written

as

8



X 2 (2k = AiW 2

B(W2) N (10)
fli
n-1

where the coefficients A, and B, in terms of xi are as follows

[Ref. 5):

A, = x0-O

B1 = xZ+2x 2

(11)

k
Bk = xk2+2 (x2kJI+ XJ. 1X2kX1)

B,= X'2)O.

Although the x,'s may be negative, Rq(a) is greater than zero

in view of equation (9). Again, the IMSL optimization routine

ZXSSQ can be employed to find the xi coefficients. The

function to minimize is [Aq-Rql.

3. Equalizer Impedance Using Gevertz Method

With the real part of equalizer approximated as a

rational function, Gewertz's method can be used to find the

equalizer impedance function [Ref. 6]. Given the real part,

q _ A(( 2) - m'M2 -n 1n2 1B((,2) n2_ 2 ISJW •12)

our objective is to determine the impedance

9



Zqs p (s- . + n,

Q (S) z% n2

where s=ja, m, and m2 are the even parts of P(s) and Q(s)

respectively, and nj and n 2 the odd parts. The denominator

polynomial, Q(s), is related to B(m2)

BS( 2) ls.• = B(-s 2) = Q(s)Q(-s) (13)

where Q(s) has all of its roots in the left hand plane and

Q(-s) has its roots in the right hand plane.

We now solve for P(s), whose order must not exceed

that of Q(s). Using undetermined coefficients (Ref. 6], we

express Zq(s) as

Zq(S) = P(s) C 0oSi+C Sn-1+..+c a (14)
Q(s) Sn÷ -S÷ni.4sn-24 ... ÷d'

Equating P(s) term by term to (mlm 2 - njn 2) and solving for

coefficients yields P(s). Reference 6 discusses other

procedures for the solving rational function of a driving

point impedance.

4. Circuit Realization

Now that Zq(s) is known, a circuit that provides the

required impedance is obtained by a conventional synthesis

method. This is a procedure by which a network is generated

from a given input/output relationship [Ref. 8]. The details

will be discussed in the next chapter.

10



III. APPLICATION OF RFM

In this chapter, we will apply the mathematical procedures

of the previous chapter to design a realizable circuit. As an

illustration of the method, the results presented in [Ref. 1]

will be duplicated and then applied to a 1-meter monopole

antenna. In order for this antenna to operate in a broad

frequency range, the matching network must make the antenna

impedance less sensitive to frequency. This is discussed

briefly in the 1-meter monopole design section.

A. EXAMPLE OF RFM APPLICATION

In order to verify a computer program (Appendix A) and to

evaluate an IMSL optimization routine (Appendix B), published

data generated by Carlin [Ref. 1] were used to design an

equalizer network.

The v.4tching network we wish to design for the given load

is shown in Figure 2. The normalized frequency range of

interest is from 0 to 1.25 (0 < w < 1.25), and an increment of

0.25 will be used. This gives 6 break points (observation

points). Since the design requirement states that the TPG

must be maintained at T(O)=0.846, this forces the circuit to

have a resistance value of r,=2.29 ohms. Calculation for the

DC resistance value can be obtained with the following

formulas (Ref. 1]:

11



2.H

S112F

Figure 2 Given Circuit with Load

Z 2, =R(0)[k, T (15)
ko = 2-•7-

where T(O) is the DC gain.

Based on these formulas, there are two cases of finding

the rational function: case I where r. > R,(0) and case 2

where r, < R1(0). In this example we will perform the design

with case 1. With r, known, the unknowns are no longer 5 but

4.

Keeping in mind the concept of RFM, the load impedance

values are first obtained from the given RLC values shown in

Figure 2. The results are given in Table I. The ak and bk of

12



equations (3) and (8) were computer programmed, a listing of

which is provided in Appendix A.

Table I: Impedance of the Load

Freq Impedance Value (0)

0.00 1.0000 +J0.0000
0.25 0.9174 +JO.2998
0.50 0.7353 +JO.7088
0.75 0.5525 +Jl.2278
1.00 0.4098 +J1.8082
1.25 0.2358 +J3.0255

1. Linear Combination Approximation of Equalizer

Resistance

Substituting equations (2) and (6) into equtLion (1),

the TPG is redefined in terms of r. [Ref. 2]

N

4R1 (w){r. + W ak(0)r)

R1 (w) + z .+ a ( (a)r +

and the function to minimize is 1T0-T(w) 1. Programming the

above equation using an IMSL optimization subroutine ZXSSQ

with (,T-T(w)l as a minimization function, the rk values were

obtained. The r. values change with the initial conditions

provided to the ZXSSQ subroutine. For this example, the

initial values were all set to zero. These values in turn

13



were used to calculate the resistance and reactance at each

breakpoint.

2. Rational Approximation

Now that we have represented R(w) as a linear

combination, the resistance values are used to calculate

Rq(,() . The function to minimize is Jq - Rq. at the discrete

frequencies u, k=0,1,. . . n. Again, the IMSL subroutine

ZXSSQ was used. The rational function is obtained as

2.29 _ A(W2)
I + 4.8(o2 - i0.2a4 + 8.3946 B(W 2 )

A plot of the rational function and linear combination is

given in Figure 3. As can be seen from the graph, the piece-

wise linear approximation tid rational approximation are in

agreement.

3. Application of Gewertz Method

We now have the real part of the equalizer impedance.

From the relationship between h and Q(s) as defined in the

equations (12) through (14), we can express B(o 2 ) in terms

of B(-s 2 ) as

B(-s 2 ) = 1 - 4.8s2 - 10.2s4 - 8.4s6.

Finding the roots of B(-s 2 ) and writing Q(e) in factored form,

we obtain Q(s) as

14



*-. Linear Approximation

- Rational Approximation

2.5

E

0.5

0
0 0.2 0.4 0.8 0.8 1 1.2 1.4

Fmquenmy

Figure 3 Rational and Linear Resistive Curves

Q(s) = (s+.887+j.316) (s+.887-j.316) (s+j.389) (s-j.389)
= 2.9s 3 +2.9s 2 +3.3s+l.

The roots of B(-s 2 ) were found by a root finding IMSL

subroutine called PLROC.

The next step is finding the coefficients of P(s).

The equalizer impedance, Zq(s), defined in terms of P(s) and

Q(s) is

Zq(s)- P c 0s 3 +cS 2 +C2 s+c 3

-Q(s) 2.86s3+2.86s2+3.27s+l

Equating the real part of Zq(s) to Aq(w) , we have

15



hmL-nln 2 = (cis 2 +c3 ) (2.86s 2+1)-(C0 S 3+C2 s) (2.86S 3+3.29s)I..j(
= 2.29.

Equating the coefficients of like powers on both sides, we get

-2. 86CoS61..w = 0 3.27co-2.86c 2s 4+2.86cs 41S.j,4 0

cJs 2 +2.86c3-3.27c 2I 5 .j,,mO c3-2.29.

Solving the above equations, we obtain Zq(s) as

Zqr(S)= 2.89s2+2.89s+2.29

2.86s3 +2.86s2+3.27s+1

4. Circuit Realization

From Z;(s), it is necessary to find the circuit

elements required to realize the matching network. For this

example, the degree of the polynomial in the denominator is

larger than that of the numerator. In order to divide a

smaller degree into a larger degree, we will convert

Z (s) to Yq(a) ,

Y(S) 1 2.8653+2.86S2+3.27S+1
- Zq (S) 2.89S2+2.89s+2.29

The division process is as follows:

16



0.99S
2.89S 2 +2.89s+2.29)2.86s 3 +2.86s 2+3.27s+1

2. 86s+2 . 86S2+2 . 27 s
1. OOs+l.

The first circuit element is a capacitor. Again converting

and repeating the process gives

2.89s
1. Os+I)2.89s 2 +2.89s+2.29

2.89s 2 +2.89s+0.00
2.29

and the second element is an inductor. This process is

continued until it is complete and further division cannot be

carried out. The last division gives us

0.43s
2.29)1. 00s+1

1.00s+0
1

which is another capacitor. The remaining value is the DC

resistance which equals to the original value we have

calculated based on the assumed TPG of 0.846.

Now that we have our circuit elements, the question is

how these elements are positioned. The crucial step is

placing the first element, for other elements follow in an

alternating sequence of parallel or series arms away from the

load. This provides a ladder network. The final circuit to

achieve Zq(s) is shown in Figure 4.

17



2.Z89 H

a229d

Equalizer
Figure 4 Final Matching Network

B. MATCHING OF 1-METER MONOPOLE ANTENNA

We have gone through an example of how a matching network

is designed. We will apply this procedure to a 1-meter

monopole antenna operating over 30-90 MHz with the break

points chosen at 10 MHz increments. The break points are

normalized to 90 MHz. Details of the calculation as shown in

the previous section will be avoided, and only the highlights

will be presented.

1. Wide-banding 1-meter Monopole Antenna

An antenna is defined as broadband "when its impedance

and pattern do not change significantly over about an octave

or more", or when the ratio between the upper frequency and

the lower frequency is greater than 2 (Ref. 9].

The input impedance is highly dependent on the

frequency of operation.

18



For an electrically small

antenna to operate over a h 1.0M

broad frequency range without

continuous fluctuation in

impedance (which in turn

restricts the power transfer

from the generator to the

antenna), the antenna must be

made lossy; i.e., a resistive

load (or loads) m.ist be added Figure 5 Monopole Antenna
Divided into N segment

to the antenna [Ref. 9). The

antenna we wish to look at has a height of 1 meter and a

radius of 0.005 meter. It must operate in a frequency range

of 30-90 MHz. Since the wavelength near the low frequency end

is much larger than its length, the antenna is considered

electrically small.

In order to calculate the resistive values to make the 1-

meter monopole broadband, we used the concept of resistive

loading proposed by Wu and King in [Ref. 11]. They used a

continuously distributed load of the form

h - -l ' (16

where h is the height of an antenna, and z is an incremental

distance from one end point of an antenna (z=O) to the

opposite end (z=h) as shown in Figure 5.

19



The quantity i# is

'= 2{sinh-I(P)-C(2A,2kh)-jS(2A, 2kh) -7 (l-e-J(2k} (17)
a kh

where a is the radius, A=ka, and k is the wavenumber in free

space (k = c/VjT) . The quantities C(a,x) and S(a,x) of

equation (17) are defined as [Ref. 11)
x

C(ax) f lc°SWdu (18)f W
0

x

S(a,x) s f du (19)

where

W= (u 2 ÷ a 2 )1/2. (20)

We have calculated the various parameters for a

continuously distributed load at the geometric mean frequency

of 52 MHz. For the 1-meter monopole, 7 is [Ref. 13]

{sinh-1 (200) - C(O. 0109,2. 176) - jS(O. 0109,2. 176)
4= 2 + 18 (ilej(-2. 176')L1.088

= 9.24 - ji.92.

Referring back to equation (16), our continuous load value

using a a0% multiplication factor is [Ref. 13)

Z1(z) (11.4-j2.6)(h-z)
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Since we are interested in lumped loading, we obtained

a discrete approximation to the continuous profile over a

segment Az, where N is the total number of segments ( h/Az)

and nAz is the location of Zn. We have used N=8 for the

1-meter monopole.

Once the required load values were calculated for each

segment, the WIRE program [Ref. 14] was used to generate the

impedance characteristics of the antenna. Table II shows the

impedance characteristic of the antenna with and without the

load added. The antenna impedance characteristics plotted on

a Smith chart are shown in Figure 6.

Table II: Unloaded and Loaded Impedance for 1-meter
Monopole Antenna

Freq Loaded Unloaded
(MHz) (ohms) (ohms)

(30) (82.57 -J375.4) (3.850 -J346.2)
(40) (90.22 -J259.5) (7.040 -J223.4)
(50) (100.9 -J185.0) (12.75 -J138.4)
(60) (115.1 -J132.5) (20.85 -J70.40)
(70) (132.9 -J94.32) (33.35 -J9.050)
(80) (154.1 -J67.81) (53.30 +J51.00)
(90) (177.5 -J52.43) (86.90 +J115.0)

2. Equalizer Impedance Calculation

Again the same procedure as above was used to

calculate the impedance. Here we varied the DC transducer

gain until the resistance values just approach zero from
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Figure 6 impedance Characteristics of 1-meter Monopole

positive values. The corresponding gain is then treated as

optimum. The same program used to find the resistance values

for the previous example was used in this case after slight

modification. The difference is that the design called for a

fixed TPG of 0.846 for the previous case, whereas, here we are

Interested in the optimum TPG. An optimum TPG, T,, was

located at 0.4785, and the comparison of the resistance plots

is given in Figure 7. The plot shows that the rational and

linear approximations closely follow each other.

The rational resistance function for the monopole is

Rq(w) = 3.59j)2 - A(6 2 )

1-.90+6640-5007 .03we B (6 2)
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Figure 7 comparison of Resistance Characteristic of I motor
Monopole Antenna

Following the steps specified in the previous chapter, the

positive real roots of B(-s 2) are

(s + 0.3147 + j0.7979)
(s + 0.3147 - j0.7979)(s + 0.1947 + .0.3420)
(s + 0.1947 - _0.3420)

which gives Q(s) as

Q(S) = S4 + 1.020S + 1.14S2 + 0.384s + 0.114.

To be consistent with the assumed form of B(W2) , Q(s) must be

divided by a constant value such that the term independent ors

is equal to 1. For the above equation, we divided by 0. 114 to

obtain the new s(s) as
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Q(S) = 8.7854+8.94S3+9.97S2+3.378+1.

The impedance Zq(s) is now Lssumed to be of the form

Zq(S) cOs'+c.s3 ÷c2 s3+c 3 s+c. - P(s)
8.78S4÷8.94S3+9.97S2+3.37S;+ Q0S)_m, +nj
m+n 2

The unknowns in the numerator can be obtained by multiplying

the odd and even parts and subtracting

A -(8.78s4+9.97s2+1) (cos4+c2s 2 +c4 )
1 -lnl f l-{(8. 9 4 53+ 3 . 3 7s) (cJs 3 +c3s)

The result is equated to A(W 2 ) for s=jw. Expressing the

unknown coefficients into a matrix form {AX}={B} and solving

for {X}, where {X} represents the coefficients of - s), we

have

1.00 0.00 0.00 0.00 0.00 C4 . o.oo
0.00 0.00 -8.78 8.94 0.00 C3  0.00

0.00 -8.94 9.97 -3.37 0.00 C2 = 0.00
0.00 3.34 -1.00 0.00 0.00 c, 3.59
0.00 0.00 0.00 0.00 8.78 C0J 0o.oo,

The IMSL subroutine LEQIF is used to solve the matrix

equation, the coefficients are found to be

c,=O.0 cq=2.33 c2=2.38 c3 =1.77 c4 =0.0

and z 0s)

24



Zq(s) = 2.33S 3 + 2'38s2 + 1.77
8.78S 4 + 8.94s3 + 9.97B2 + 3.37s + 1

In the above equation, frequency has been normalized such that

s=l corresponds to 90 MHz. Furthermore, the impedance itself

is normalized such that Zq = 1.0 corresponds to 500 ohms.

The matching circuit is now obtained by the synthesis

method. Since the power of the denominator is larger than the

numerator, we convert Zq(s) to Yq(S) and reduce the equation

to

Y (s) = 3.77s + 0 +
0.71S÷

3.26s + 1 +
1.10S 0.299

To obtain the value of the circuit elements, they need to be

denormalized. If we were to match this to a simple 75 ohm

coaxial transmission line, a transformer could be used.

Taking the denormalized resistance value to be 150 ohms

(0.299x500) from the above equation, and using the transformer

with a turns ratio of 1: 1.41, the circuit in Figure 8 is

obtained.

The TPG with the matching network is plotted in Figure

9. The equalizer tunes the resistance and the reactance values

of the load and maintains an approximate gain of 0.4785.

The resistance function indirectly determines the

number of circuit elements required to design a matching

network. From equation (10), it is seen that the maximum
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Figure 8 Matching Network for 1-meter Monopole Antenna
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power of the denominator is 2n. The number of circuit

elements required for the design is usually greater than or

equal to n. Therefore, increasing the degree of denominator

will increase the number of circuit elements.

Regardless of what the highest degree of the

denominator polynomial is, the resistance of the rational

function approximation must closely follow the linear

approximation. Some of the higher order approximations with

n=5 and n=6 for the 1-meter monopole are shown in Figure 10.

It can be seen from the figure that as more terms are included

in the polynomial a closer approximation is achieved;

however, the TPG is not significantly affected by the highest

power of the rational resistance function beyond a certain

number of terms. Therefore, the minimum acceptable order in

the rational resistance polynomial should be used. Otherwise,

the mathematics becomes cumbersome.

As an example, if we had designed a matching network

using n=6, the rational resistance function would have 'een

q(C,) -= 1.77o 2

1-19.3W2+180.7 (j4-733.5w6 +1500.8&8-1425.3c10+ 5 0 5 .5cI2

and the equalizer impedance would be

Z (S) 40.79s 5 +33.39s 4 +63.77 s 3 +24.51s 2 +17.07s
4.74sS6 +3.88s 5 +10.38s 4 +5.28S3 +6.32S2+1 .54s+1
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Figure 10 Resistance Curves for n=5 (top) and n=6 (bottom)

The above impedance function is realized by the network shown

in Figure 11. The complexity of the matching network has been

increased (compared Figures 8 and 11), but the TPG has not

changed significantly. It is still given by the piecewise

curve of Figure 9.
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IV. CONCLUSION

The real frequency method provides an elegant, yet simple

way of designing a matching network for any load. This thesis

concentrated on using this method to design a matching network

for a 1-meter monopole antenna. It can be seen from the

verification of Carlin's data and from the application to a 1-

meter monopole antenna that this numerical technique is

readily realizable and easy to implement. The basic

assumption is that the antenna impedance characteristics are

known and that these characteristics are provided to the

circuit designer. With the 1-meter monopole antenna we had to

add a resistive load along the antenna in order to make its

impedance characteristics broadband. Then we were able to

design the equalizer. The key to finding the equalizer

impedance is determining the resistance function, which is

done using the RFM. Once this is found, the equalizer can be

completely determined.

The number of elements required to design a matched

circuit is normally determined by the rational resistance

function as shown in equation (10). Generally, n indicates

the number of circuit elements required for the design.

Carlin used 2n=6 for the highest degree of the rational

resistance function, and his circuit was composed of three

elements. For the 1-meter monopole, 2n=8 gave a minimum of

30



five (transformer inclusive) circuit elements. For the higher

orders (n > 6), the 1-meter monopole required seven circuit

elements. The number of circuit elements required is usually

greater than or equal to n. Regardless of the power of the

rational resistive function, the TPG is still the same as

specified by the straight line approximation. Therefore, a

minimum order of power of the rational resistance function

that closely follows the straight line approximation should be

used. Otherwise, the mathematics become cumbersome.

For this thesis, simple software was written to calculate

some of the values. The ease of the programming was due to

the availability of the required software in the IMSL Math

Library. Listings are included in Appendix B.

Although this thesis was limited to a simple 1-meter

monopole antenna, the techniques presented herein can be

adapted to design a wideband matching network for any load.
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APPENDIX A

PROGRAM FOR 1-NETBR MONOPOLE ANTENNA

C THIS PROGRAM TAKES THE IMPEDANCE DATA OF 1 METER MONOPOLE
C ANTENNA AND CALCULATES THE RESISTANCES USING TWO METHODS:
C LINEAR. COMBINATION AND RATIONAL FUNCTION. THE RATIONAL
C FUNCTION

EXTERNAL CURSM1

PARAMETER (M=11,N=9,XJ=(N+1) *N/2,WO=5*N+2*M+X.J)
INTEGER IXJAC,NSIG,MAXFN, IOPT, INFER, IER
REAL PARM(4),X(N+1),F(M),XJAC(M,N+1),XJTJ(XJ),WORK(WO),

+EPS,DELTA,SSQ,AIC(20,20),BK(20,20),W(20),Z(20,20),Y(20,20),PI,
+AZ(20,20),BZ(20,20) CZ(20,20) AY(20,20) BY(20,20) CY(20,20),
+RQ(20) ,RR,XQ(20) ,XX,T(20) ,RO.TPG

COMPLEX IMPED(20)

COMMON RO,IMPED,AK,BK,T,TPG

OPEN(UNIT=1,FILE='RiECURSM DAT' ,STATUS='OLD')
OPEN (UNIT=2 ,FILE=IFREQM DAT' ,STATUS= 'OLD')
OPEN(UNIT=3,FILE='AKM DAT' ,STATUS='OLD')
OPEN(UNIT=4,FILE='LOAD DAT' ,STATUS='OLD')
OPEN(UNIT=8,FILE='BKM DAT' ,STATUS='OLD')
OPEN(UNIT=5,FILE='RQM DAT' ,STATUS='OLD')

READ (6,*) TPG
M= 11
N=9
IXJAC=M
NSIG=5
EPS=0.O
DELTA=O. 0
MAXFN=2 000
IOPT=l

DO 110 I=1,N
110 X(I)=0.0

RO=O.0
PI=3.412

C ******CALCULATE AK(W)

READ(4,*) (IMPED(I) ,I=1,M)
READ(2,*) (W(I) ,I=1,M)
DO 10 K=1,M
KK=K-1

DO 20 I=1,M
IF (W(K) .LE. W(I)) THEN
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AK(K,I)=1..0
ELSEIF (W(KK).LE. W(I).AND.W(I) .LE. W(K)) THEN

AK(KI)=(W(I)-W(KK) )/(W(K)-W(KK))
ELSEIF (W(I) .LE. W(KK)) THEN

AK(K,I)=0.0
ELSE

AK(K,I)=Oo0
ENDIF

WRITE(3,*)AK(K,I)
20 CONTINUE
10 CONTINUE

C ********CALCULATE BK(W) *********

DO 50 K=1,M
DO 51 I=1,M
Z (K,I)0. 0
Y(K,I)=O.O
AZ (K, I)=O .0
BZ(K,I)=O.0
CZ(K,I)=0.0
AY(K,I)=0.O
BY(K, I) =0.0
CY(K,I)=0.O
BK(K,I)=0.0

51 CONTINUE
50 CONTINUE

DO 30 K=1,M
DO 31 I=1,H
IF (W(K) .LT. .001 O0R. W(I) .LT. .001) THEN
Z (K,I)=O.0
GO TO 32
ENDIF
IF (W(I) .EQ. W(K)) THEN
BZ (K, I) =0.0
IAZ(K,I)=(W(I)/W(K) +1)*LOG(W(I)/W(K) +1)

Z(K,I)=W(K)*(AZ(K,I) + BZ(K,I) - 2*CZ(K,I))
GO TO 32
ENDIF
AZ(K<,I)=(W(I)/W(K) +1)*LOG(W(I)/W(K) +1)
CZ(K,I)=(W(I)/W(K) *LOG(W(I)/ (W(K)) WK-)

Z(K,I)=W(K)*(AZ(K,I) + BZ(K,I) - 2*CZ(K,I))

32 KK=K-1
IF (KK .EQ. 0.0) THEN
BK(K, I)=Z (K, I)
WRITE(8,*)BK(K, I)
GO TO 31
ENDIF
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IF (W(KK) .LT. .001 -OR. W(I) .LT. .001) THEN
Y(KK,I)=0.0
BK(K,I)=1/((W(K)-W(KK))*PI)*(Z(K,I)-Y(KK,I))
WRITE(8,*) BK(KD I)
GO TO 31.
ENDIF

IF (W(I) .EQ. W(KK)) THEN
BY (KK, I) =0. 0
AY(KK,I)=(W(I)/W(KK)+1) *LOG(W(I)/W(KK)+1)
CY(KK,I)=W(I)/W(KK)*LOG(W(I)/W(KQ))
Y(KK,I)=W(KK)*(AY(KK,I)+BY(KK,I)-2*CY(KK,I))

WRITE(8, *) BK(K,I)
GO TO 31
ENDIF

CY(KK,I)=(W(I)/W(KK)+)*LOG(W(I)/W(KK)) l

Y(KK,I)=W(KK)*(AY(KK,I)+BY(KK,I)-2*CY(KX,I))
BK(K, I) =1/ ((W(K) -W(KK) ) PI) *(Z (K, I) -Y(KK, I))
WRITE (8,*) BK(K, I)

31 CONTINUE
30 CONTINUE

C ************CALL IMSL ZXSSQ

CALL ZXSSQ(CURSM1,M,N,NSIG,EPS,DELTA,MAXFN,IOPT,PARM,X,SSQ,F,

+XJAC, IXJAC,XJTJ,WORX, INFER, IER)

X(10)=-(X(1)+X(2)+X(3)+X(4)+X(5)+X(6)+X(7)+X(8) +X(9))
WRITE(1,*) 'X(10) ',X(10)
WRITE(1,*) 'T' ,T

C ********CALCULATE RQ AND XQ *******

DO 300 I=1,M
RQ(I)=0.0

300 CONTINUE
DO 80 I=1,M

RR=O.0
DO 81 K=1,N+l

KK=K+1
RR= AK(KK,I)*X(K)+RR

81 CONTINUE
RQ (I) =RO+RR
WRITE(5,*)RQ(I)
WRITE(1,*) 'RQ(I) ',RQ(I)

80 CONTINUE

DO 301 I=1,M
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XQ (I) =0.0
301 CONTINUE

DO 90 I=1,M
XX=O. 0
DO 91 K=1,N+1
KK=K+1
XX=BK(KK, I) *X(K) +XX

91 CONTINUE
XQ (I) =XX
WRITE(1,*) 'XQ(I) ',XQ(I)

90 CONTINUE

WRITE(1,*) .X',X
WRITE(1,*) 'SSQ' ,SSQ
END

C*******************SUBROUTINE CURSM1***********************

C THIS IS A CALLING SUBROUTINE TO IMSL SUBROUTINE ZXSSQ. IT
C WILL PROVIDE THE LINEAR RESISTANCE VALUES
C

SUBROUTINE CURSM1(R,M,N,F)

INTEGER M,N,I,K,N6,J
REAL R(N),F(M),SUM(20),AK(20,20),BK(20,20),T(20),W(20),

+TT(20) ,RX(20) ,TPG

COMPLEX IMPED(20)

COMMON RO,IMPED,AK,BK,T,TPG

N6=N+l
RX(N6) =RO
DO 10 J=1,N
RX(J) =R(J)

10 RX(N6)= (RX(N6)+R(J))
RX (N6) =-RX (N6)

DO 100 I=1,H
SUMA=0.0
SUMB=0. 0

DO 15 K=1,N6
KK=K+1
SUM(I)=AK(KK,I) *RX(K)
SUMA=SUMA+SUM(I)
SUM (I) =BK (KK, I) *RX (K)
SUMB=SUMB+ SUM (I)

15 CONTINUE
TT(I)=4*REAL(IMPED(I) )*(RO+Stfl4A)
W(I)=(REAL(IMPED(I) )+SUMA+RO) **2+(AIMAG(IMPED(I) )+SUMB) **2
IF (W(I) .EQ. 0.0) THEN
T(I)0O.O
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GO TO 100
ENDIF
T (I) =TT (1)/W(I)

100 CONTINUE

DO 200 I=1,M
F(I)=TPG-T(I)

200 CONTINUE
RETURN
END

C *******************RATIONAL FUNCTION****************

C THIS PROGRAM DETERMINES THE RATIONAL FUNCTION OF REISTIVE
C VALUES.

EXTERNAL EXAMP1
INTEGER M,N,IXJAC,NSIG,MAXFN, IOPT, INFER, TER,

+I, J, K,L,NK, KK
REAL PARM (4) ,X (9) ,F (11) ,XJAC (11, 9) , XJTJ (4 5) ,WORK (12 0) E PS,

+DELTA, SSQ,W(20) ,B(20) ,RQ(20) ,RX(20) ,A(1)

COMMON RQ,RX,W

OPEN(UNIT=1,FILE='RQM DAT' ,STATUS='OLD')
OPEN (UNIT=2, FILE=' FREQM DAT' ,STATUS='OLD')
OPEN(UNIT=3,FILE='RAT DAT B' ,STATUS='OLD')

M= 11
N=9
IXJAC=M
NSIG=3
EPS=0.0
?4AXFN= 1000
IOPT=2.
DELTA=0.0

DO 10 Iinl,N
10 X(I)=1.0

READ(1,*) (RQ(I) ,I=1,14)
READ (2, *) (W (I) , I= 1,M)

CALL XSSQ(EXAMP1,M,N,NSIG,EPS,DELTA,MAXFN,IOPT,PARM,X,SSQ,F,
r-XJAC, IXJAC, XJTJ ,WORK, INFER, IER)

L=-(N-1)/2
A (1) =X (1)
B(1)=X(2) **2+2*(X(3))
WRITE(3,*) 'A(1) ',A(1) ,'B(1) ',B(1)

DO 20 I=3,L
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SUM=0. 0
K=I
PRINT *, K
DO 30 J=3,K

SUM=SUM+X(J-1) *X(2*K-J+l)
30 CONTINUE

B(I)=X(I)**2 + (2*(X(2*K-1) + SUM))
WRITE(3,*) 'B(I) ',B(I)

20 CONTINUE
B(4)=X(N) **2
WRITE(3,*) 'B(4) ',B(4)
WRITE(3,*) 'X',X
WRITE(3,*) 'SSQ' ,SSQ
WRITE(3,*) 'RQ',RQ
WRITE(3,*) 'RX',RX
END

C ******CALLING SUBROUTINE FOR RATIONAL FUNCTION ****

SUBROUTINE EXAMP1(X,M,NF)

INTEGER M,N,I,J
REAL X(N),F(M),SUMA,SUMB,SUMC,RX(20),RQ(20),W(20)

COMMON RQ,RX,W

DO 10 I=1,M
SUMA=0. 0
SUMB=-O.0
SUMC=0.0

DO 5 J=1,N-1
5 SUMA=SUMA+(X(J)**2)*(W(I)**2)

SUMA=(X(1) **2) *(W(I) **2)
DO 6 J=2,N
SUMB=-SUMB+X(J) *(W(I) ** (J-1))

6 SUMC=SUMC+X(J)*((-W(I))**(J-1))
RX(I)=SUMA/(-5*(((1+SUMB)**2)+((l+SUMC)**2)))

10 CONTINUE

DO 40 I=1,H
F(I)=ABS(RX(I)-RQ(I))

40 CONTINUE
RETURN
END
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APPENDIX B
IMSL SUBROUTINE

FILE: ZXSSQ FORTRAN A

C IMSL ROUTINE NAME - ZXSSQ SQQ1O
C ZxsSGS00C .................................................................. .. ;SOO30C zxss jo j.•
C COMPUTER - IBM/SINGLE ZXSSOO')J

C

C PURPOSE - mINIMUM OF THE SUN OF SQUARES OF M FlNCTIONS ZXSSOO40
C IN N VAFIABLES USING A FINITE DIFFERENCE ZXsSO1jO
C LEVENEEBG-MARQULRDT ALGORITHMI ?.xssai1u
C ZKSSGleo
C USAGE - CALL ZXSSQ(FUNC M .NSIG EPS DELTA MAXFN IOPT ZXSS0130
C phARNX, SQ, v, 1JC',IxjAt,AJi, wcs&, iuief~ lEbfzxsso 140
C ZXSSO 150
C ARGUMENTS FUNC - A USER SUPPLIED SUdFOUTINE WHICHI CALCULATES ZXSS0160
C THE BESI)UAL VECTOR F(,, F(2 FOF ZXSS0170

c ~~GIVEN PARAMETER VALUESA k,( xIf j.!taXNA. Zx~~3
C THE CALLING SEQUENCE HAS T 0 G F FM ZXSS0190
C CALL FUNC(X, ZXSS02
C WHETE IS A VECTOR OF LENGTH N AND F IS ZXSSO210
C A VECTOE OF LENGTH M. ZISS0220
C FIJNC MHST APPEAR IN AN EXTERNAL STATEMENT ZXSS0230
C IN IHE CALLING PROGRAM. ZXSS02S 0
C FUNC MUST NOT ALTER THE VALUES OF ZXSSO25G
C X. {I),I=-...,N. N, UD N. ZXSSJ2uO
C N - THlE NUN.ER TH IsESuDUALS OR COBSERVATIONS 'XSSý270
C fINPUT) Z1SS0280
C N - TIE NUMIE7i OF UNKNOWN PAEAMETERS (INPUT). ZXSS029.0
C NSIG - FIRST CONVERGENCE CRITERICN. (INPUT) ZXSSO13G
C CONVERGENCE CONDITION SATISFIED IF ON TWO ZXSS0310
C SUCCESSIVE ITERATIONS TilE PARAMEIERP LXSS0320
C ESTIMATES AGREE, CGMP6NEtJ1 BY CUMPONENr, ZXSSO3J0
C TO NSIG DIGITS. ZXSS0340
C EPS - SECOND CONVERGENCE CRITERION. (INPUT) ZXSS0350
C CONVERGENCE CONDITION SATISFIED IF, ON TUWO ZXSSJo3u0
C SUICCESSIVE ITERATIONS THE RESIDUAL SUM ZXSS0370
C OF SQUARES ESTIMATES HAVE RELATIVE ZXSSO3dO
C DIFFEPENCE LESS THAN OF EQUAL IC EPS. EPS ZXSS0390
C MAY BE SET 10 ZERC. ZXSSO'JO
C DELTA - TIIIPD CONVERGENCE CRITERICN. (INPUT) ZISS0410
C CONVERGENCE CONDITION SATISFIED IF IHE ZXSS0420
C (EUCLIDEAN) NORM CF TIll APPROXIMATE ZXSSO430
C APADIENT IS LESS THAN OR EQUAL 10 DELTA. ZXSSG440
C DELTA MAY BE SET TC ZERO. ZXSS0450
C NOT? THE ITERATION IS TERMINATED AND ZXSS04bO
C CCNVERGENCE IS CONSIDERED ACHIEVEb, IF ZXSS0470
C ANY ONE OF THE THREE CONDITICNS IS ZXSSD4dO
C SATISFIED. ZXSS0490
C MAXFN - INPUT MAXIMUIS NIuMBEF OF FUNCTION EVALUATIONS ZXSS05Q0
C (I.E., CALLS TO SUDROUTINE FUNC) ALLOWED. zxSSOt10
C THE ACTUAL NUIBER OF CALLS ro FUNC MAY ZEKS0520
C EXCEED MAXFN SLIGHTLY. ZXSS0530
C IOPT - INPUT OPTIONS PARAMETER. ZXSS0540
C IOPT=O IffrLIES SECWN'S ALGORITHM WITHOUT ZxSS0550
C STRICT DESCENT IS DESIRED. ZXSS0500
C IOPT=1 IMPLIES STRICT DESCENT AND DEFAULT ZXSS0570
C VALUES FOR INPUT VECTOR PARM AVE DESIRED. ZISS05O0
C IOPf'=2 IMPLIES STRICT DESCNr IS DESIRED WITH ZXSSJ590
C USER PARAMETER CICICES IN INPUT VECTOR PAtRM.ZX!;SObO0
C PARA - INPUT VECIOR OF LENGTH 4 USED ONLY FOR XSSb0610
C IOPT EQUAL TWO. PARM(I) CONTAINS WHEN ZISS0620
C I=1 THE INITIAL VALUE Of THE MASQUAPDT ZXSSOobO
C PiRAMETER USED TO SCALE THE DIA ONAL OF ZISS0640
C THE APPROXIMATE HESSIAN MATRIX, XJI•I ZXSSOO50
C BY THE FACTOR (1.0 * PARM(I). A SMALL ZXSS0660
C VALUE GIVES A NEWTON STEP, WHILE A LARGE ZXSS0b7O
C VALUE GIVES A STEEPEST DESCENT STE?. ZXSS0680
C THE DEFAULT VALUE FOR PAkM(1) IS 0.01. ZXSS0690
c 1=22 THE SCALING FACTOR USED TO MODIFY THE ZXSS0700
C AIRQUARDT PARAMETER, WHICH IS DECREASED ZXSS0710
C BY PARR (2) &ITER AN IMMEDIATELY SUCCESSFULZXSS0720
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C DESCENT DIRECTION, AND INCREASED BY THE ZXSS0730
C SQUARE OF PARMJ(2) If NOT. PARA(2) MUST ZXSSO740
C 1I GREATER THAN ONE, AND TWO IS DEFAULt. ZXSS0750
C I=, AN UPPER BOU1ND FOR INCREASING T11E ZXSsO7bO
c MIARQSUADT PARAMETER. THE SEARCH FOS A ZX550770
C DESCENT POINT IS ABANDONED IF PARM{3) IS ZXSS0760
C EXCEEDED. FAR11(3) GREATER THAN 100.0 IS ZXSS0790
C RECOMMENDED. DEFAULT IS 120.0. ZXSS0800
C 1=4 VALUE FOS INDICATING WHEN CENTRAL ZXSS0810
C RATHER THAN FORWARD DIFFERENCING IS TO BE ZXSS0820
C USED FOR CALCULATING THE JACOBIAN. THE ZXSSO30
C SWITCH IS MADE WHEN THE NORM OF THE ZXSS084O
C GRADIENT OF THE SUM OF SQUARES FUNCTION ZISS0850
C BECOMES SMALLER THAN PARM (4). CENTRAL ZXSSO860
C DFTFEERENCING IS GOOD IN T E VICINITY ZXSSOBO
C OF THE SOLUTION SO PAPMJ41 SHOULD BE ZXss08H0
C SAtLL. THE DEFAULT VALUE IS 0.10. ZXSS0890
C - VECTOR OF LENGTH N CONTAINING PARAMETER ZXSS0900
C VALUES. ZXS50910
C ON INPUT X SHOULD CONTAIN THE INITIAL ZXSS0920
C ESTIAATE OF THE LCCATION OF THE MINIMUM. ZXSS0930
C ON OUTPUT K CONTAINS TiE FINAL ESTIMATE ZXSSO940O
C OF TIlE LOCATION OF THE MINIMUM. ZXSS0950
C SSQ - OUTPUT SCALAR WHICH IS SET TO THE RESIDUAL ZXSSO960
C SUMS OF SQUANES F1)•2 .*2. 'F(M)**2, FOR ZXSSO970
C TUE FINAL PARAMETER ESTIM.TES. ZXS50980
C F - OUTPUT VECTOR OF LENGTH M CONTAINING THE zX5S0990
C RESIDUALS FOR THE FINAL PARAMETER EST[MATES.ZXSS000
C XJAC - OUTPUT M BY N MATRIX CONTAINING TUE ZXSS1o10
C APPROXIMATE JACCBIAN AT THE OUTPUT VECTCR X.ZXSS1020
C IXJAC - INPUT ROW DIMENSION OF .IATRIX XJAC EXACTLY ZXSS1030
C AS SPECIFIED IN THE DIMENSION SIAIEMENT LXSS10O4
c IN THE CALLING PECOGRAM. ZXSSI050
C XJTJ - OUTPUT VECTOR OF LENGTH IN#I)4N/2 CONTAINING ZXSS1OuO
C THE N BY N MATRIX (XJAC-TRANSPCSED) 0 (XJAC)ZXSS1070
C IN SYMMETRIC STORAGE AODE. zXSSiOdO
C WORK - WORK VECTOR OF LENGTH 56N * 2*M + (N+4)*N/2. ZXSSI090
C ON OUTPUT WORK (I) CONTAINS FOR ZISS1130
C 1=1, THE NORM OF THE GRADIENT DFSCRIBED ZxSS1II0
C UNDER INPUT PARAMETERS DELTA AND PAFN (4). ZXSS112O
C I=2 THE NUMBER OF FUNCTION EVALUATIONS ZXSSI130
C REQUIRED DURING TI1E WOhK(5) IT ERATIONS. ZXSS114O
C I=3 THE ESTIMATED NUMBER OF SIGNIFICANT ZXSSI150
C DIGITS IN OUTPUT VECTOR K. ZXSS11o0
C 1-4 THE FINAL VALUE OF THE MARQUARDT ZXSS1170
C STLING PARAMETER DESCRIBED UNDER PARM(1).ZXSS1180
C 1=5 THE NUMBER OF ITERATIONS (I.E., CHANGESZXSS119O
C T6 THE X VECTOR) PERFORMED. ZXSS1200
C SEE PROGRAMMING NCTES FOR DESCRIPTION OF ZISS1210
C THE LATTER ELEMENTS OF WORK. IXSS1220
C INFER - AN INTEGER THAT IS SET ON OUTPUT TO ZXSS1230
C INDICATE WHICH CONVERGENCE Cf.ITfRI(N WAS ZXSS1240
C SATISFIED. ZXSS1250
C INFER = 0 INDICATES THAT CONVERGENCE FAILED. ZXS51260
C IER GIVES FURTHER EXPLANATION. ZXSS1270
C INFER = 1 INDICATES THAT THE FIRST CRITERION ZXSS1280
C WAS SATISFIED. ZrSS 1290
C INFER = 2 INDICATES THAT TlE SECOND CRITERION ZXSS13D0
C WAS SATISFIED. ZXSS1310
C INFER = 4 INDICATES THAT THE THIRD CRITERION ZXSS1320
C WAS SATISFIED. ZXSS13JO
C IF MORE THAN ONE OF THE CONVERGENCE CRITERIA ZXSS134O
C WERE SATISFIED ON THE FINAL ITERATION, ZXSS1350
C INFER CCNTAINS THE CORRESPONDING SUM. ZXSS1360
C (E.G., INFER = 3 IMPLIES FIRST AND SECOND ZXSS1370
C CSITE'IA SATISFIED SIMULTANEOUSLY). ZXSS1380
C IER - ERROR PARAMETER (OUTPUT) ZXSS1390
C TERMINAL ERROR ZXSSI40
C IER=129 IMPLIES A SINGULARITY WAS DETECTED ZXSSI41O
C IN THE JACOBIAN AND RECOVERY FAILED. ZXSS1420
C IEP=130 IMPLIES AT LEAST ONE OF M N IOPT. ZXSS1430
C PARM(1), OR PARM(2) WAS SPECIFIED ZXSS1440
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C INCORRECTLY. ZXSS1'450
C IEP=132 IMPLIES THAT AFTER A SUCCESSFUL ZXSS1460
c RECOVERY FROM & SINGULAR JACOBINN, THE ZISS1(470
C VECTGE X HAS CYCLED BACK TO THE ZXSS1'480
C FIRST SINGULARITY. ZXSS1~490
c IER=13.3 IMPLIES THAT SAIFN WAS EXCEEDED. ZIXSS1500
C WARNING ERROR ZXsSiS5O
c IER=38 IMIPLIES THAT THE JACOBIAN IS ZEEbC. ZISS1520
C THE SOLUTION X IS A STATIONARY POINT. ZXSS15.30
c IER=39 IMPLIES THAT THE MIARQUARDT ZXS51540
c PARAMETER EXCEEDED PARK (3). THIS ZXSS1550
C USUALLY MEANS THAT THE RE UESIED ZXSS51560
c ACCURACY WAS NOT ACHIEVED. ZXSS1570
C ZXSS1580
C £'RECISION/HARDWARE - IINGLE AND DOODLE/H32 ZXSS1 590
c - SINGLE/H1li,i48,H60 ZXSS1600
C ZXSS 1610
c DEQD. IMSL ROUTINES - LEQTIPLriDECP,LUELMP,UERSET,UERTST,UGETIO ZXSS1620
C ZXSS1630O
C NOTAT ION - INFORMATION 0N SPECIAL NOTATION AND ZXSS16'40
C CONVENTIONS IS AVAILABLE IN THE MANUAL ZXSSlu50
C INTRODUCTION OR THROUGH INSL ROUTINE UUfELP ZXSS1660
c zXSSzt7o
C COPYRIGHT - 1982 BY IMSL, INC. ALL RIGHTS RESERVED. ZXSS16i3O
c ZXSS1690
C WARRANTY - IRSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN 7.XSS1700
C APPLIED TO THIS CODE. NC CTHEB WARRANTY, ZXSS1710
C EXPRESSED OR IMPLIED, IS AP~PLICABSLE. ;.XSS1720
C ZISS17JO
C---------------------------------------------------------------------------- ZXSS1740
C ZXSS1750

SUBBOUrINE ZXSSQ (FU*C, Nf NSIG fp5 DELTAIIAXFN IOPT PAIIN, ZXSS1760
* XSSQ,!fijAC 113K 6 IJTJ WoRK iNFEE lEh) ZXSS1770

C SPAkIFICATION; FOR AHGUM;NTS zxss'17eo
INfEGEF M N,NSIG MAXFN,IOPI,IXJAC INFER IER ZXSS1790
REAL 6fS DELTI PAEMil¶(1X(N).SS6'F(e¶),xJAC(1), 51S51800

*XJT3 ( 1) ,W6RK (1) ZXSSIO1O
CXJAC USED INTERNALLY IN PACKED fORM ZXSS1820

C SPECIFICATIONS FOR LOCAL VARIABLES ZXS51830
INTEGER IMJC IGRAD1 IGRADL IGRADU IDELX1 IDELXL 51551840

* IOELIU ISCAL1 ISCAI.L ISCALU IXNE01 IXNEkL, ZXSS1850
* IIBADI'UPPI1 !EPL IFf'U IFMLi IFML IEVAL ZXSS1860
* ~~~~IDAD IýW ITEfI J ISAC ,IK L,It JS, 1,LJ,1ONZ517
* ~IZERb LECEL MUD6 LOzxss1bo

REAL AL CONS2 MEN~EIt F0 4GHL ZXSSI890
*ERL2 ERLM F0 tos h ,6G AF ZXSS1900
*HR ObE ONEflOCNE PSCN SFO AX ZXSS1910
* PREC REL RHII fiG,S~bIFtSsQ6LDSUM,lEN, zXS51920
* TENTri IDlP IrtoiD UP 2Ef0 ZXSS1930
* IDABS: RELC6N,PO1'$TW6,IIUNjW,gDELTA2 ZXSS 1940

DATA SIG/6.3/ ZKSS 1950
DATA AX/.1 ZX!s 19bO
DATA Po I iNNTH HALF ZERO CNE ONEP5 TWO, ZXSS1970

*TEN HiUNTWONEPio/o. 61 .1~ 0.5,0.0, XS18

*1.,;.5,2.,10 0 1 2E2 I. El6 ZXSS1990
C ERUO!A CHECi 5 1.1S2000

C FIRST EAECUTAIJLE STATEMENT ZXSS2010
IEIR = 0 ZXSS2020
LEVEL = 0 ZXSS20 30
CALL UERSET (LEVELLEVOLD) ZXS52040

IF M.LE.0.OiF.M.GT. IXJAC. OR.N.L?.0.OR.ICPT. LT.0.Or,.IOPT.GT.2) ZXSS205i0
0TO 305 zxss2oLo

IMJC =IxJAc-A ZXSS2070
IF (IOPT.NE 2) GO Tro 5 ZXSS208C
IF (PAPM(2).LE.ONR.OR.PARtI(l) LE ZERO) GO TO 305 ZISS2090

c ;ACHINE DEPENDERT CONSTANTS ZXSS2100
5 PREC =TENO* (;SIG-GNE ZISS2 110

BEL =TEN* '(-SIG*HALF) ZXSS2 120
H ELCON = TeN (-NSIG) LINS2 1J0

CWORK VECTOR IS CONCATENATION OF ZXSS2140
c SCALID HE!SSIAN GRADIENT DELX,SCALE, ZXSS2150
C XNEW,XBAD,F(X~bEL) ,P(X- 6 EL) ZISS2160
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IGRAD1 =l(N~ lý*N)12 ZXSS2178IGRADL = ,RAD'l+1 ZXSS2 100
IGhiADU = 1GRAD1+N ZISiS2 1'zO
IDiFLX1 =IGRAD11 ZXSS2230
IDELXL = IDELX1+1 Lxss2210
IDELXU =IDELXI+N ZSS22z.0
ISCALI =IDELXU ZXS3S2230
ISCALL =ISCAL1ti ZXSS2240
ISCALU =ISCAL1tH ZXSS2250
,IXNEWI =ISCALU ZXSs22oO
IXNEWL =IXtJEW1+l ZXSS2270
IXHAD1 = IINEV1*N ZXSS2280O
IFPL1 IXBAD1.N ZXSS2290
I1'PL =IFPL1tI ZXSS2300
IFPU =IFPL1#N .XSS2310
IFML1 =IkPU 2XSS2 320
IFML =IFnLlt1 ZXSS2330
IMJC =IXJAC - Mi ZXSS2.340

c INITIALIZE VARIABLES ZXSS2350
AL =ONE ZXSS2360
CONS2 = TENTH ZXSS2370
IF, MIPH.EQ . I,) Go TO 20 ZXSS2t380
IF lIop :EQ1) GO TO 10 ZISS2390
IL PAN1ZXSS2400Fo= PHUN (2 ZXSS2410
UP PARi 31) ZISS2'420
COt4S2 =PR4)zXss2430
GO TO 15 ZXSS2'440

10 AL = P01 LXSS2450
P0 = TWO ZX.SS246C
UP = HUNTW ZXSS24710

15 ONLesF0 = ONE/Fo LXSS2480
FOS 0 = FO*F0 ZXSS2490
FOS S54 =FOSQ*.4 ZXSS2900

20 IEVAL =0 ZXSS25 10
DELTA2 =DELTAeAL&L? ZxsS252O
ERL2 = ONdEP10 ZXS52530
IBAD =-99 ZXSS254I0

IW= 1 XSS255C
ITER =-1 ZXSS2560
INFER = 0 zxss2570
IEE = 0 ZXSS2580O
DO 25 J=IU)ELXL IDeLXIJ ZXSS259G

WO BK(J) = ZERO Z XSS52600
25 CONTINUE ZXSS2610

GO 'To 165 ZXSS2620
MAIN LOOP ZXSS2630

30 SSQOLD =SSQ ZK(SS2640
c CALCULATE JACOBIAN ZXSS2650

IF (INFEli.GT.0.oBt.IJAC.GE.N.OH.IOP EQOO.CON.T3 GO TO 55 ZS26

IJAC =IJACI-1 ZXSS2680
DSQ3 ZERO ZXSS2b9O
DO .5 J=IDELXL IDELXIJ LXS32700

050 DSQ.WbBK (J) *WORK (,J Z'(SS2710
35 CONTINUE ZXSS2720

IF IDSQ .LE.ZERO) GO TO 55 ZX~SS2730
DO 50 11l M ZXSS2740

G F(1) -WORK (IFNL1tI) ZXSS2750
K =I LXSS2760
Do 40 J=I[DELXL IDI'LXU ZXSS2770

G G+XJAC (A) owouE(3) ZXS52780
K KtIXJAL ZXSS2790

40 CONTINUE ZxsS2000
G =G/OSQ ZKSS2810
K1= ZXSSA820
Of) 45 J=IDELXL IDELXII ZXSS2830

XJAC (K) X=AAC(K,)-G*WoBK(J) ZXSS28'40
K =K+ XJAC ZXSS28350

45 CONTINUE ZXSS2860
50 CONTINUE ZXSS2870

GO TO 80 ZKSS2680
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C JACORIIa4 BY INCLEEENTING X zx5s2890
5i IJAC = 0 ZXSS2900

K = -IflJC ZXS529 10
DO 75 Jx1 N ZXSS2920

K = KttiNJc zxss2930
XDADS = ASA(KJff L XSS29~40
HH = BEL* (A A 1( XDABS,&X)) ZXS52950
XHOLD = ZXSS29bO
NJX (J) XJ )O ZXS52970
CALL FUNC ( NORK(IFPL)) ZXSS2980
IEVAL =IEVl~i" ZXSS2990
I (J) XHOLD ZXSS3000
1 (ISW.EQ.1) GO TO 65 ZXSS3O 10

c CENTRAL DIFFERE4CES ZXSS3020
K (J X HOLU-H H ZXSS30 10
CA~ft PUNC IZNWOrK(IFML)) ZXSS304U
1EVAL IdVAl+'I zxsS3O5O
K (J) XHIOLD ZXSS3060

RH HALFE/HR ZXSS3070
Do 60 I=IFPL, I PU ZXSS3080

K =K.1 ZISS3090
XJACýK) =(WORK (I) -WORK (It-A)) #R111 ZXSS3100

60 CONTINUE ZXSS3 11C
Go TO 75 ZXSS3 120

C FORWARD DIFFERENCES ZXS33130
65 Rtil = ONE/HO1 ZXSS3140o

Do 70 1=1 A ZXSS3 150
K = K~i ZXS53 160
XJACJK) =(W0RK(IFPL1+I)-F(I)) *Bill] ZXS53170

70 CONTINUE. ZISS3 180
75 CONTINUE ZXSS3 190

c CLUAEGAIN ZXSS.3200
80 ERL21 = ERL2 CACLT RDETZXSS3210

ERqL2 z ZERO ZXSS322U
K =-IMJC ZXSSjs2J0
DO 190 J=IGRADL,IGRALHII ZXSS3S24G

K =KftdJC ZXSS3250
SUMi = ZER~O ZXSS32bO
DO 85 1=1 A xsN7

K =KiZXSS3280
SA= SUMtIJAC (K) $'(1) ZXSS3290

85 CONTINUE ZXSS3 300
WORK (J) =SUM ZXSS3310
XRL2 = ERL2itSUM#SUM ZXSS3320

90 CONTINUE ZXSSJ3330
ERL2 = SQBT(EBL2) ZXSS33'40

C CONVERGENCE TEST POf\ NCFN CF GRADIENIZXS53350
IF (IJAC GT. 0, GO TO 95 ZISSJ330
IF (ERL2LE. DIL¶A2) I NEED = NFER.4 ZXSS3370
IF (ERL2.LB.CCNS2) ISW 2 ZXSS3380

C CALCULATE THE LOWER SUPER TPIANGE OF ZXS3390
C JACOHIAN (TRANSPOSED) *JACOBIAH ZXSS3430

95 L ZXSS34 10
IS =-IIJAC ZS32
DO 110 I11IN ZXSS34JO

Is= IStI.IJAC ZXSS3'440
JS =-IXJAC zKSSi4S50
DO 105 3=1 1I ZXSS34u0

JS = IS+IXJAC ZXSS3470
L zL+I 'LXSSJ460
SUA ZERO ZXSs349O
D0 1G0 K=1 1 1 ZXSS3530

LI =IS#K ZXSS35 10
LIl = .15+K ZXSSJ520
SUhA S11 A+XJ AC (LI1) EJ AC (1.J) ZXSS3530

10." C OilTI NU ZXSS35~40
X1TJ(L) = SUAi ZXSS3550

10i CONTINU~ ZXSS3500
11K) CONTINUE ZXSS3570

CCONVEFGENCE CHECKS ZXSS3580
IF (INFER.GT.0) GO TO 315 ZXSsS390
IF (IEVAL.GE:iiAXFh) GO TO 290 ZISS36JO
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C COMPUTE SCALINt; VECTOR ZXSS3tflO
IF (IOPT.EQ.0) GO TO 120 ZX~SS62C

K = 0ZXSS3630
Du 115 1=1,N ZXSS36'40

K =K.J ZXSS 3650
WO~if IISCALI#-J) XJTJI(K) ZXSS36bC

115 CONTINU ZXSS3b7O
GO 10 135 ZXSS3680

c COMPiUTE SCALING VECTOR AND NORM ZISS3690
120i DNOR = ZEhO ZXsS33700

K =0 ZXSSJ7 10
DO 125 3z1,N ZX5S3720

K = KJZXSS3730
WORK ISCAL1.J) =S7RT (XJT.1(jK)) ZXSS37L40
DNORA DNORjls(JTJ K 0XJTJ K) ZXSS3750

12') CONTINUE ZXS53760
ONOOM = ONE/SQRT(DUCRM) ZXSS3770

C NOPMALIZE SCALING VECTOR ZXSS3780
DO 130 J=ISCALL ISCALEJ zxssi7'Jo

WORK (J) =WOAK (J) *DNORM*EAL2 ZXSS3600
130) CONTINUE ZXSS381 0

C: ADD L-.1 FACTOR TO DIAGONAL ZXSSJ820
135 ICOLJNT = 0 ZX.ZJ830
140 K =0 ZXSS3840

00 150 1=1 N ZXSS.3850
DO 145 ~= ,i ZZxs.3sfQ

K = Ktl ZXSS3870
WORK (K) = XJTx1 (A) ZXSSJ8do

141i CONTINUE ZXSS3890
WORK (K = WORK (K) tWORK (ISCAL1+I)$AL ZXSSJ900
WORK (IDELX1*I) = WOFiK(IGRAD1 *i) ZXSS39 10

150 CONTINUE~ ZXSS23920
C CHiCLESKY DECOl¶POSVIION ZXSS3930

15!) CALL LEQTlP (WORK 1 N WORK(IDELXL),N,0,G,Xfl0LD,IEFi) ZXS53940
IF (IEE.EQ.O) cc toitO1o ZXSS3950
IER =3 ZXSS3J900
IF (IJAC.GT.0) GO TO 55 ZXSS3970
IF (IBAD.LE.O) GO To 240 LXS539t3O
IF (IBAD.GE .2) GO TO 310 zxss3990
GO TO 190 ZXSS4000

163 IF (IBAD.NE.-99) IBAD = 0 ZXSS40 10
C CACLT U FSUFSZXSS4020

165 DO 170 J=1,14 CACLXSS~ FSUAE 4030
WORK (IXNEWI+J) = X(J)-WOFK(IDELX1+J) ZXSS4040

170 CON'I1NH ZXSS4050
CALL FUNC ýWORK(IXNEWL),VI,N,WCRK(IFPL)) ZXSS4060
IEVAL = 1EV &L.1 ZXSS4070
SsQ= ZERO ZXSS4080
DO 175 I=IFPL IFPU ZISS4090

SSQ = SSQ#-4RK(I)vWO1RK(i) ZXSS4 100
175 CONTI NiE ZXSS4 110

IF (ITEE.GE.O) GO TO 185 ZXSS4120
C SSQ FOR INITrIAL ESTIMATES OF X ZXSS4130

ITER =0 ZXSS4 140
SSQCLO =SSQ ZXSS4 150
DO 180 1 = IN ZXSSU 1b0

F I)= 40EK(IFPL1+I) ZXSS4 170
183 CONTINUE ZXSS4J180

GO TO0 55 ZXSS4 190
185 IF (LOPT.EQ.3) GO To 215 ZXSSu 200

C CHECK CESCEN'I 2ROPERTY ZXSS4210
IF (SSO..LE.SSQGLD) GO TO 235 ZXSSL4220

C INCREASE 'ARAME'?ER AND TH~ AGAIN ZXSS4230
190 ICOUNT =ICGUNT.1 ZXSS'4240

AL =Ale*FOSQ ZISS4250
IF IIJAC. EQ.0) GO TrO v95 ZXSS4260
IF (ICOUtJT.GE.4.OR. AL.GT.tJP) Go rC 200 ZXSS4270

19'. IF 4L.LE UP) GO TO 140 ZXSS4280
IF (IBAD.EQ. .)GO To 316 ZISS4 290
TER =39 ZXS54300
GO TO J15 Lxs!L; 310

204 AL =AL/FOSQS4 ZXSS4J320
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GO To 55 ZXSS4~330
C ADJUST NARQIJ&RDT PARAMETER ZXS543ks0

205 IF (ICO1JNT.go .OJALG= AL/FO ZISS4J350
IF lEHL2X.LE.Z'bO) GO TO 210 ZXSS4 360
G ~ER L2/EEL 2X ZXSS437',
IF (ERL2.LT.ERL2X) AL = ALOAIAXI (CNESFO,a) ZXSS43~0v
IF (ERL2.GT.RRL2X) AL = ALSA11INI (F,G) ZXSS4 390

210 AL =AMAXI(AL,PREC) ZXSS4400
C ONE ITERATION CYCLE COMPLEIED ZXSS4410

215 ITER =ITEliel ZXS34420
0O 220 J=1 N ZiSS4430

X(J) = ORK(lXNEW1*J) ZISS4L44G
220 CONT NE ZXSS4450

Do 225 1=1 m ZXSS4h4bO
WORK(IFFL1+I) F(I) ZXSS4470

22b w~~ WO l(FPL1~ ZXSS44e80
2 ) ONT±NIuE=OK 1+ ZISS4490

c EELATIVE CC!4VERGEIWCE TEST FOR X LXSS'4500
IF (AL.G.qr5.o) GO -To 3o ZISS45 10
DO 230 J-i N ZXSS4520

XDIP = AB!IjWORKý lDELXl+J))/ANAX1 (ABSS(X(J)) AX) ZXSS4530
IF I XDIF.G .REL ON) Go TC 235 ZS44

2.30 COUTI uE ZX~SS550
INFER 1 Zxssst5bo

C RZLATIVE CGCdVERGENCE TESI FORi Sf;Q ZXSS4570
2115 SOOIF T ABS45SSQ-S5')0LD)/AIAMXI SsQOLq,AX) ZXSS4580

I 4SFI. .S) INFER IN? I 2 ZXSS459 0
(710c 30ZXSS4600

c SINGULA9 DECOAPOSITIGN ZXS54610
240 IF (IBAD) 255,245,265 ZXSS'4b20

c CHIECK TO SEE IF CUF-.LENI ZXSS4630
C ITFRATE HAS CYCLED 13ACK 'I C ZISS4640
c THE LAST SINGULAR POINT ZX:iS4650

245 DO 250 J=1,N ZXE!;4660
1111OLD = WORK (IXBAD1*J) ZX'S4670
IFNfABS(X(J)-X11OLn) .GT.RELCON*OArAX1 (AX,ABS (XjOLD))) GO '~~255 ZXSS4bd0

2 53 CONTINUE z X1;S4 b9 0
GO 10 295 ZXSS4I700

c UPDATE THE UAr) X VALUES zXSs4710
255 DO 260 Jil N ZXSS47 20

WORK(lX6AD1 *J) = X(.J) LX5514730
263 CONTINUE zxss'740

IBAD 1 IzXSS4750
cINCRE~ASE DIAGONAL CP 8E5SIAN ZXS34760

265 IF CIOPT. NE.O) GO TO 2d0 ziSs4770
K = aZXSS4780

DO 275 1=1 N ZXSS4790
DO 270 5=1,I ZXSS4tIO0

K =K.1 ZXSS48 10
WOfiK(K) =xjrJ(K) ZXSS4820

270 CONTINUE ZXSS4830
WORKP =K ONEP5* (XJIJ (K) *AL*ER124WCHK (ISCALl .1)) *DEL ZXSSL4840

275 CONTINU ZXSS4850
IBAD = 2 ZXSS'48b0
GO To 155 ZXSS4870

CREPLACE ZEROES ON HIESSIAN DIAGONAL ZXSS4880
280) IZERC = 3 ZXSS4 8 9IO

DO 285 J=ISCALL,ISCALU ZXSS4900
IF WWRKfijJ.GT.ZERO) (;0 To 285 ZXSS4910
IZE0 HOZ C+ ZXSS4920
WdORK(.1) =ONE ZXS5'4930

28Uý CONTINUE Z XS S11940
IF (lZERO.1.T.N) GO TO 14J) ZXS4950
IER = 38) ZXSS49bO
GO '10 315 ZXSSL4970

C 7ERMINAL BEA.CH ZXSS4980
290 IER = IEki*1 ZXSS4 990
295 IER = IEIl. ZX;S5ooo

lER = IE?+l ZXS550 10
30S IER z IERfl ZKSS5020
313 I~r = IER+129 ZIS50530

if (I~fi.EQ.13J)) GO TO 335 LXS5504G
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C OUTPUT EFL2,IEVAL,NSIG,AL, AND ITZE1 ZXS5'050
315 G =SIG ZIS35060

DO 320 3=1,tI zxss507O
VUOLD =ABS (WORKA4IDEl~x1+J) ZKSS5080
IF ('LIIOLD. L. ZERO) GU 'TC ýi 2 ZICSgS509
G =AM IN l (G,- ALOG 10 (XHGOI.D) +A LOG 10 (AM AX I (A X,A 8! (X (1))) XS5100

320 CON~TINUE ZISS5 110
IF(H.G.T.2) GO TO 330 zls513o

DO 325 J = 1 N ZXSS5 140

325 WORK JJ>5) = 4OR~KcatI;RADl) ZXSS5 140

330 WORK 1) = RL2.ERlL2 ZS55

WORK (2) = IEV AL LXSS5160

5 - QOD 
ZXSS5 170

()JW 3 ZXSS5 I80
WORK 4) = AL ZXS35190

WORK (5)= ieR ZX5S5200

335 CALL U BSET (LEVOLD,,LEvoi.n) ZXSS52 10
'IF (tIFi.EQ. 0)Go I ) 9005 ZXSS522C

9000 CONTINUE 
ZSS52230

CALL (JEBTST (IER,6IIZXSSQ )ZXSS5240
9005 RETURN ZXSS5250

END ZXSS5260
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